
Numerical visualization of mass and heat transport
for conjugate natural convection/heat conduction

by streamline and heatline

Qi-Hong Deng, Guang-Fa Tang *

College of Civil Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China

Received 15 May 2001

Abstract

The method of numerical visualization of mass and heat transport for convective heat transfer by streamlines and

heatlines are comprehensively studied. Functions are directly defined in terms of dimensionless governing equations or

variables. Some basic characteristics of the functions are illustrated in detail, knowledge of which is essential to perceive

the results and the philosophy of heat and fluid flow. The consistency of the formulations is especially addressed when

dealing with conjugate convection/conduction problem. The functions/lines are unified for both fluid and solid regions,

and the diffusion coefficients of the function equations are invariant. The method has been used to visualize the heat and

fluid flow structures for natural convection in an air (Pr ¼ 0:71) filled square cavity over a wide range of Ra ¼ 103 � 106,

and those for conjugate natural convection/heat conduction problem where the conduction effect of solid body on heat

transfer is investigated. As to exhibiting the nature of convective heat transfer, streamlines and heatlines provide a more

practical and efficient means to visualize the results than the customary ways. � 2002 Elsevier Science Ltd. All rights

reserved.

1. Introduction

Numerical modeling of convective heat transfer

problem has been an area of great interest in the recent

years due to its wide application in engineering. Com-

pared to experimental method, numerical analysis may

provide a more direct way on how to enhance/reduce

heat transfer effectively so as to improve the perfor-

mance or to optimize the structure of thermal device.

However, numerical results for convective heat transfer

are now basically presented by distributions of primitive

variables such as velocity and temperature, which de-

scribe the state of the system locally but not its physi-

cally associated structure. In essence, the process of

convective heat transfer is a combination of both mass

and heat transport, numerical visualization of the two

transport processes is therefore a more direct approach

to investigate the structure or characteristics of the heat

and fluid flow with insight to the philosophy of con-

vective heat transfer.

Streamfunction and streamlines are very efficient and

being widely used tools to visualize momentum trans-

port of fluid flow. To visualize the transfer of heat by

fluid flow, an energy analog concept, heatfunction and

heatlines, was first introduced by Kimura and Bejan [1]

in 1983, which provides a better visualization technique

as compared to the traditional isotherm approach. The

method has been adopted and extended in several ways

in the following literature [2–9]. But these heatline ap-

plications are basically limited to natural convection

with simple boundary conditions except for the laminar

boundary layer flow [6]. It is worth noting that Costa

[8,9] gave a unified viewpoint in both physical and nu-

merical aspects on treatment of the functions and lines

for visualizing two-dimensional transport problem,

which would be helpful to guide the applications

henceforth. However, as Costa dealt with conjugate

transfer problem, the assertion of variable diffusion co-

efficient and the practice of harmonic mean for functions
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are not correct because the constraints of flux balance at

fluid–solid interface cannot be satisfied in this case as it

will be detailed in the context.

In spite of its usefulness, application of the heatline

visualization technique is limited. One main reason is

that the basic characteristics exhibited cannot be mea-

sured by experiment as well. The method needs to be

assessed by application to more complex problems. This

motivates the present work.

To evaluate the value of the method for using

streamlines and heatlines to visualize the mass and heat

transport phenomena for convective heat transfer, the

current research is to extend its application to more

complex systems: conjugate problem between natural

convection and heat conduction, and mixed convection

problem combined the buoyancy driven and the forced

flows. The former is considered in this paper, while the

latter will be treated in the next paper. Firstly, the

functions (including streamfunction and heatfunction)

are defined in terms of dimensionless governing equa-

tions or variables, which provide a more general and

straightforward visualization means than the customary

definitions based on dimensional variables. Secondly,

some important characteristics of the functions and their

corresponding contour lines are systematically analyzed

to further understand the principle of the convective

heat transfer. Finally, consistency of the diffusion coef-

ficient of the functions for conjugate problem, was es-

tablished, which makes it easier to visualize the results.

The objective of the present work is to visualize the

characteristics of the heat transfer and fluid flow for

natural convection in an air-filled square cavity over a

wide range of Raleigh number (Ra ¼ 103–106 ) by means

of streamlines and heatlines, and also to examine the

effects of conducting body centered in the cavity on heat

transfer across the cavity.

2. Analysis and formulation

The conjugate heat transfer problem considered in

this paper is schematically shown in Fig. 1. It is a closed

square cavity with sides of length L, within which a

conducting body, with sides of length L=2 and thermal
conductivity ks, is centered. The left and right side walls
are isothermal at temperatures of Th and Tc, respectively,
whereas the bottom and top surfaces are thermally in-

sulated. The gravitational acceleration acts parallel to

the isothermal walls. It is assumed here the fluid prop-

erties being constant, except for the density in buoyancy

term following the Boussinesq approximation. Be aware

that when the size of the solid body decreases to zero, or

without the solid conducting body, the conjugate heat

transfer problem would turn to pure natural convection.

A two-dimensional, steady state, incompressible

laminar flow model is considered in the present study.

The non-dimensional conservative governing equations

are written in general form as follows:

Nomenclature

A area

cp isobaric specific heat

g gravitational acceleration

H dimensionless heat function

J transport flux vector

k thermal conductivity

L length of enclosure

Nu average Nusselt number

p pressure

P dimensionless pressure ðP ¼ ðp=qÞðL=aÞ2Þ
Pr Prandtl number (Pr ¼ m=a)
Ra Rayleigh number (Ra ¼ gbDTL3=ma)
s segment

S source term

T temperature

u; v Cartesian velocities

U ; V dimensionless Cartesian velocities

ððU ; V Þ ¼ ðu; vÞL=aÞ
x; y Cartesian coordinates

X ; Y dimensionless Cartesian coordinates

ððX ; Y Þ ¼ ðx; yÞ=LÞ

Greek symbols

a fluid thermal diffusivity

b fluid thermal expansion coefficient

m fluid kinematic viscosity

q fluid density

h dimensionless temperature

(h ¼ ðT � TcÞ=DT )
DT temperature difference between hot and

cold walls (DT ¼ Th � Tc)
C general diffusion coefficient

/ general variable

U general function related to /
w dimensionless streamfunction

Subscripts

c cold

f fluid

h hot

max maximum

min minimum

s solid

Superscripts

� thermo-physical property ratio
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Continuity

oU
oX

þ oV
oY

¼ 0: ð1Þ

X-Momentum

o

oX
UUð Þ þ o

oY
VUð Þ ¼ m�Pr

o2U
oX 2

�
þ o2U

oY 2

�
� oP
oX

: ð2Þ

Y-Momentum

o

oX
UVð Þ þ o

oY
VVð Þ ¼ m�Pr

o2V
oX 2

�
þ o2V

oY 2

�
� oP
oY

þ RaPrh: ð3Þ

Energy

q�c�p
o

oX
Uhð Þ

�
þ o

oY
V hð Þ

�
¼ k�

o2h
oX 2

�
þ o2h
oY 2

�
: ð4Þ

The non-dimensional parameters are defined in terms of

fluid properties as

ðX ; Y Þ ¼ ðx; yÞ=L; ðU ; V Þ ¼ ðu; vÞL=a;

P ¼ ðp=qÞðL=aÞ2; h ¼ ðT � TcÞ=DT ;
Pr ¼ m=a; Ra ¼ gbDTL3=ma:

In order to distinguish the solid from the fluid, we

introduce three relative parameters m�, k� and q�c�p
referred to thermo-physical property ratios of solid to

fluid; they are all unity in fluid but equal to infinity

(in fact, a very high value), Ks=Kf , and unity, in solid
zone, respectively. Note that when the velocities ap-

proach zero in the solid zone, the solution of energy

equation (4) is independent of the value of q�c�p. For
simplicity, we assign, q�c�p ¼ 1 in the context, so as to

obtain an analog form between energy and momen-

tum equations.

It should be pointed out that a high value of the

relative kinematic viscosity m� in solid region would

make the velocity components negligibly small by solv-

ing momentum equations, then the continuity equation

is automatically satisfied thereby. Correspondingly, the

energy equation is reduced to heat conduction equation

for the solid body, because its convection terms vanish.

The state of art in the coupled convection and conduc-

tion analysis lies in that the same set of conservative

equations (1)–(4) is simultaneously solved over the entire

domain including both fluid and solid regions.

Eqs. (1)–(4) can be numerically solved by SIMPLE

algorithm detailed in [10]. In order to improve numerical

accuracy, the third-order deferred correction QUICK

scheme [11] and second-order central difference are, re-

spectively, employed for the convection and the diffusion

terms. To solve the conjugate problem, the grid layout is

such that the fluid–solid (F–S) interface forms a control

volume face for the neighboring grid points. The abrupt

changes of thermal conductivities at the interface be-

tween the fluid and solid regions are handled by har-

monic mean formulation [10]. In this way, the energy

balance, i.e., continuity of temperature and heat flux,

across the interface is automatically well established.

The global solution procedure facilitates the code pro-

gramming, making it easier to solve the conjugate heat

transfer problem, regardless of increasing requirement

of computational storage and time. This is evident fur-

ther for the complex problems involving multiple F–S

interfaces, as the considered case with four F–S inter-

faces inside the cavity.

Boundary conditions of the entire computational

domain for velocity and temperature in non-dimensional

form are taken as follows:

At X ¼ 0 : U ¼ V ¼ 0; h ¼ 1; ð5Þ

At X ¼ 1 : U ¼ V ¼ 0; h ¼ 0; ð6Þ

At Y ¼ 0 and Y ¼ 1 : U ¼ V ¼ 0;

oh=oY ¼ 0: ð7Þ

The whole heat transfer characteristics across the cavity

are described by the average Nusselt number, which is

based on the enclosure length and the thermal con-

ductivity of the fluid. For the hot wall, it is expressed

by

Nuh ¼ �
Z 1

0

oh
oX

����
X¼0

dY ; ð8Þ

and for the cold wall, by

Nuc ¼ �
Z 1

0

oh
oX

����
X¼1

dY : ð9Þ

By conservation of energy across the enclosure, the av-

erage Nusselt numbers at the hot and cold walls should

Fig. 1. Schematic of square cavity with centered solid body.
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be equal, i.e., Nuh ¼ Nuc, because the top and bottom
surfaces are adiabatic.

Now, according to Bejan [1] and Costa [9], the defi-

nitions of streamfunction and heatfunction can be

physically unified to satisfy automatically the continuity

and the net energy equations, respectively. In this paper,

the functions are defined in terms of dimensionless

governing equations. As will be worked out, the deri-

vation is more general and straightforward.

The general conservative dimensionless transport

equation of continuity and energy equations without

source term can thus be expressed in total flux form

(consists of convection and diffusion) as

o

oX
U/

�
� C/

o/
oX

�
þ o

oY
V /

�
� C/

o/
oY

�
¼ 0; ð10Þ

where the meanings of the dependent variable / and its

diffusion coefficient C/ are listed in Table 1. The / flux

components in X and Y directions are, respectively,

identified as

J/;X ¼ U/ � C/
o/
oX

; J/;Y ¼ V / � C/
o/
oY

: ð11Þ

We define a new function UðX ; Y Þ in such a way that a
constant U line is parallel to the flux flow J/, or, the flux

across the constant line is zero, which can be expressed

in mathematical manner as

dU ¼ J/ � ds ¼ �J/;YdX þ J/;XdY ¼ 0; ð12Þ

where the symbol (�) is the cross product, and ds is

differential of the line. Expanding the total differential

equation (12) yields the definition of the general function

UðX ; Y Þ in differential form as follows:

� oU
oX

¼ J/;Y ¼ V / � C/
o/
oY

;

oU
oY

¼ J/;X ¼ U/ � C/
o/
oX

: ð13Þ

Note that the definition of UðX ; Y Þ satisfies Eq. (10)
identically, that is: when / is unity, Eq. (10) is continuity
equation, and the corresponding definition in Eq. (13) is

streamfunction as usual; when / represents the dimen-

sionless temperature, Eq. (10) becomes energy equation,

and Eq. (13) is then the definition of heatfunction. This

relationship between the general function U and the

variable / is also tabulated in Table 1.

According to the definition mentioned above, one

can easily draw an important property of the functions.

Given that the flux flows through two arbitrarily con-

stant U lines as shown in Fig. 2, because no flux crosses

the constant lines and also no source exists between the

lines, the flux entering the area A1 must be equal to that
leaving to area A2, namely

J/;1 � A1 ¼ J/;2 � A2; ð14Þ

where J/;1 and J/;2, respectively, refer to the mean fluxes

across the area A1 and A2.
Some basic characteristics of streamlines and heat-

lines, based on the definition and the property of the

proposed functions, Eqs. (13),(14), can be worked out as

follows:

1. For the definition of function is in terms of its first or-

der derivatives, what is of importance or meanings

are the differences between U’s values but not the val-
ues themselves. That is, difference in value of stream-

lines denotes flow flux between the streamlines, and

that of heatlines expresses the flux of heat between

heatlines.

2. As the flux cannot approach infinity, the area be-

tween the lines cannot be zero, which means that a

constant U line either starts and stops at boundaries

or circulates as vortices.

3. From Eq. (14), the flux run through the area is in-

versely proportional to the size of area, the smaller

the distance between U lines, or the denser the U
lines, the larger the flux.

4. In the solid zone, i.e., U ¼ V ¼ 0, the streamfunction

would keep constant as indicated by Eq. (13), then

the solid surfaces would be a streamline, and no

streamlines exist in the solid. Meanwhile, the heat-

function formulation would reduce to heat-flux func-

tion corresponding to heat conduction in solid zone,

and therefore, heatline visualizing the convective heat

transfer is the counterpart or the generalization of

heat flux line used in conduction.

5. As shown by definition, streamfunction represents

the strength of convection, while heatfunction ex-

Table 1

General variable (/) and diffusion coefficients (C/) of the gov-

erning equations and their corresponding U functions

Physical

principle

/ C/ U U Contour

plots

Mass

conservation

1 0 w Streamlines

Energy

conservation

h k� H Heatlines

Fig. 2. Flux passing through two constant U lines.
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presses the relative magnitude of strength between

convection and diffusion or conduction.

At the fluid–solid interface, the balance constraints

will be

U ¼ V ¼ 0; ð15Þ

oh
oX

����
f

¼ k�
oh
oX

����
s

;
oh
oY

����
f

¼ k�
oh
oY

����
s

: ð16Þ

Substituting Eqs. (15),(16) into Eq. (13), yields the re-

lations of streamfunction and heatfunction at the fluid–

solid interface

ow
oX

����
f

¼ ow
oX

����
s

;
ow
oY

����
f

¼ ow
oY

����
s

; ð17Þ

oH
oX

����
f

¼ oH
oX

����
s

;
oH
oY

����
f

¼ oH
oY

����
s

: ð18Þ

It is evident that the diffusion coefficients for energy

equation h change from 1 in fluid region to k� in solid
region, while the coefficients for heatfunction Hare in-

variant, both equal to unity. In fact, they reflect the

identical interface constraint of energy balance, i.e.,

continuity of heat flux. However, Costa [8,9] took the

diffusion coefficients at the interface for heatfunction as

being variable, ranging from 1 on fluid side to 1=k� on
solid side, which is not true, because the energy balance

constraints at interface, Eq. (16), cannot be ensured so.

Eliminating the gradient terms in Eq. (13) by cross

partial differentiation, yields

0 ¼ o2U
oX 2

þ o2U
oY 2

þ o

oX
V /ð Þ � o

oY
U/ð Þ: ð19Þ

This is a conduction-type equation, with source term if

the fluid flow subsists or without source term if the fluid

flow subsides. An important aspect is that the U fields

can be solved by the same numerical procedures and

routines as those used for the primitive variable / by

introducing zero convection coefficients, as pointed out

by Costa [9]. Since the diffusion coefficients of Eq. (19)

are consistent for both fluid and solid regions, the har-

monic mean procedure is not needed to calculate the

coefficients at F–S interface and the values of function U
at interface are not needed for drawing contour plots.

For solving Eq. (19), we now focus on the boundary

conditions of U fields. Due to the relativity of U value,

one should select a reference point on the boundary

where its value is assumed to be zero. Then the U values

over the boundaries including the reference point can be

obtained by integrating the derivatives presented in Eq.

(13) through the directions of boundaries. Hence, the

boundary conditions of streamfunction and heatfunc-

tion for the considered conjugate heat transfer problem

shown in Fig. 1 can be defined below:

First set w 0; 0ð Þ ¼ H 0; 0ð Þ ¼ 0; ð20Þ

At Y ¼ 0 : H X ; 0ð Þ ¼ H 0; 0ð Þ �
Z X

0

V h

�
� oh
oY

�
dX

¼ 0; ð21Þ

At X ¼ 0 : H 0; Yð Þ ¼ H 0; 0ð Þ þ
Z Y

0

Uh

�
� oh
oX

�
dY

¼ �
Z Y

0

oh
oX

dY ; ð22Þ

At X ¼ 1 : H 1; Yð Þ ¼ H 1; 0ð Þ þ
Z Y

0

Uh

�
� oh
oX

�
dY

¼ �
Z Y

0

oh
oX

dY ; ð23Þ

At Y ¼ 1 : H X ; 1ð Þ ¼ H 0; 1ð Þ �
Z X

0

V h

�
� oh
oY

�
dX

¼ �
Z 1

0

oh
oX

����
X¼0

dY ¼ Nuh: ð24Þ

Noting that there is no flow flux through enclosure, the

boundary conditions of streamfunction are all zeroes by

integrating the streamfunction definition, Eq. (13), along

boundaries.

The averaged Nusselt number would be provided

directly by the heatline boundary conditions, and thus,

the total heat transfer across the cavity can be graphi-

cally shown by the heatlines.

3. Results and discussion

To validate the method of present solution, the pre-

dicted values of pure natural convection in a air-filled

square cavity, as schematically shown in Fig. 1 but

without centered solid body, are compared with the

benchmark results [12]. As shown in Table 2, the max-

imum values of absolute streamfunction and the average

Nusselt numbers agree to within 2.5% and 1%, respec-

tively, with the benchmark solutions for Rayleigh

numbers up to 106. This confirms the accuracy of the

present method.

Then, we used the method to investigate the heat

transfer and flow structures of the natural convection in

Table 2

Comparisons of the present results with benchmark resolution

for natural convection in square cavity in presence of air

(Pr ¼ 0:71)

Ra Present Benchmark [8]

jwjmax Nu jwjmax Nu

103 1.17 1.118 – 1.118

104 5.04 2.254 – 2.243

105 9.50 4.557 9.612 4.519

106 16.32 8.826 16.750 8.800
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an air-filled square cavity with a centered solid body

with relative thermal conductivity of k� ¼ 5, as shown in

Fig. 1. According to governing equations (1)–(4), the

solutions will be determined only by the Rayleigh

number, Ra, whose effect on the convective heat transfer

is studied in the following.

3.1. Natural convection

Results of natural convection for Rayleigh numbers

Ra ¼ 103–106 are, respectively, shown in Figs. 3–6 by

means of streamlines, heatlines, velocity profiles and

isotherms. The streamfunction, w, and heatfunction, H,

described vividly the transport path of mass and heat,

while the velocity profiles and isothermals are in terms

of primitive variables (V ; h) customary.
First of all, it should be noticed that there are some

common interesting characteristics among the stream-

lines and the heatlines for all cases generalized as fol-

lows.

As mentioned before, the constant U lines either start

and stop at boundaries or circulate as vortices. Since

Fig. 3. Results of natural convection at Ra ¼ 103 in an air-filled square cavity: (a) Streamlines whose incremental step is 0.1; (b)

heatlines whose incremental step is 0.2; (c) velocity – V profiles along the horizontal centerline X; (d) isothermal whose incremental step

is 0.1.
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there is no mass or fluid exchange between the system of

the cavity and its environment, the streamlines are all

circulated as vortices. However, heat is absorbed from

the left hot wall and released through the right cold wall.

Therefore, some heatlines start from the hot wall and

stop at the cold wall, which are responsible for the heat

exchange between the system and the environment.

Noting that, the function values are of relativity, their

signs are dependent on the chosen reference point of

zero value. For the boundary conditions of the functions

as specified by Eqs. (20)–(24), the positive values of lines

(either streamline or heatline) refer to the system mass or

heat transfer. On the contrary, the negative value implies

the inner transfer of the system. Therefore, all the values

of streamlines are negative, but the values of heatlines

are different, which is positive for those end-to-end at

walls and negative for those eddies. In fact, both of the

two horizontal adiabatic walls will be heatlines accord-

ingly.

The heatline of maximum value, provides directly

the value of the average Nusselt number, which reflects

the total amount of the heat transfer across the cavity.

Fig. 4. Results of natural convection at Ra ¼ 104 in an air-filled square cavity: (a) Streamlines whose incremental step is 0.5; (b)

heatlines whose incremental step is 0.4; (c) velocity – V profiles along the horizontal centerline X; (d) isothermal whose incremental step

is 0.1.
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The heatlines crossing the hot wall are more crowded

near the bottom side than those near the topside. This

heatline pattern visualizes the non-uniform distribution

of the heat flux over the walls, and is supported also by

isotherms, i.e. the larger the heat flux, the sharper the

isotherms changes.

At low Rayleigh number, Ra ¼ 103, as shown in

Fig. 3, the streamlines are of clockwise unicellular flow

structure, and their relative low values such as

wmin ¼ �1:17 indicate that the convection is very weak.

Accordingly, the heat transfer across the cavity is mainly

dominated by conduction, and thereby the heatlines and

the isotherms both exhibit pseudo-conduction structure.

The maximum value of heatlines, or average Nusselt

number, 1.118, indicates that the heat transfer across the

cavity is small in this case because of the low thermal

conductivity of air.

Fig. 4 illustrates the results at Rayleigh number

Ra ¼ 104. The convection is strengthened, as indicated

by the minimum value of streamlines, wmin ¼ �5:04. The

Fig. 5. Results of natural convection at Ra ¼ 105 in an air-filled square cavity: (a) Streamlines whose incremental step is 0.1; (b)

heatlines whose incremental step is 0.8; (c) velocity – V profiles along the horizontal centerline X; (d) isothermal whose incremental step

is 0.1.
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non-uniform distribution of streamlines implies that the

flow flux or convection is stronger in the outer region

than that in the center region. The effect of growing

convection is more pronounced in heatlines and iso-

therms. It is interesting to find that the width of the heat

boundary layers is approximately the distance between

the position of velocity extremes and the isothermal

walls layers, where heat is absorbed or released rapidly,

and thus the temperature changes abruptly as exhibited

by isotherms. Moreover, since the system heat transfer

occurs in the upper part of the cavity, the temperature

stratification is gradually formed. As a result, the air

through the upper part is hotter than the lower part,

which leads to the temperature highest in the top left

corner. It should be emphasized that the conduction is

now still an important heat transport mechanism com-

pared with convection, for there are a quantity of

heatlines circulate in the core. The maximum value of

heatline, 2.254, indicates that the heat transfer across the

cavity is enhanced by the increasing convection.

As the Rayleigh number further increased up to 105,

shown in Fig. 5, there are distinct characteristics in the

Fig. 6. Results of natural convection at Ra ¼ 106 in an air-filled square cavity: (a) Streamlines whose incremental step is 2.0; (b)

heatlines whose incremental step is 1.5; (c) velocity – V profiles along the horizontal centerline X; (d) isothermal whose incremental step

is 0.1.
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streamlines: it is of bicellular flow structure, and the

convection is much increased as indicated by

wmin ¼ �9:50. The non-uniform distribution of stream-

lines implies that the convection is strong in the outer

region but weak in the core where the fluid is almost

stagnant. These characteristics interpret that, convection

becomes a dominant mechanism to transport the heat,

which is more clearly depicted by heatlines. The rareness

of heatlines in the half center region indicates that the

role of conduction being markedly weakened in the

process of heat transfer. The maximum value of heat-

lines, or average Nusselt number, 4.557, indicates that

the heat transfer is further strengthened.

When Rayleigh number rises up to 106, as shown in

Fig. 6, the convection is amplified again and has played

a fully dominant role in the process of heat transfer. As

expected, the streamlines are basically clustering in the

thin outer region and rare in the inner region. The

thermal boundary conditions have much influence on

fluid in the outer region but little in the core where the

air remains nearly stationary. This characteristic is

confirmed by heatlines where both the thickness of the

vertical boundary layers and the width of the horizontal

channel decrease further. Accordingly, the heat transfer

is enhanced up to the highest level of Nu ¼ 8:826.

3.2. Conjugate natural convection with conduction

Now, we focus our attention on the conjugate natural

convection/conduction problem to investigate the con-

duction effect of solid body on the heat transfer char-

acteristics across the cavity. When the Rayleigh number

is low, Ra ¼ 103, as shown in Fig. 7, the existence of a

conducting body reduced the convection, with the

maximum value of absolute streamfunction decreasing

to jwjmax ¼ 0:237 from jwjmax ¼ 1:17 in Fig. 3, and so,
conduction played a fully dominant role in the process

of heat transfer. Further, since the solid body with a

high relative thermal conductivity of k� ¼ 5, the aver-

aged Nusselt number increased to Nu ¼ 1:418, approxi-
mately 30% higher than that of the pure convection case.

As expected, the heatlines basically follow the principle

of heat conduction, exhibiting a group of parallel lines.

It is worth noting that the heat flux lines in the solid

conducting body are consistent with the heatlines as

explained before.

Fig. 8 presents the results for Ra ¼ 104. The convec-

tion is largely weakened by the inserted solid body.

However, the solid body directly conducts heat from the

hot fluid in the top-left part to the cold fluid in the bot-

tom-right part, which acts like ‘‘short circuiting’’. The

conduction of solid body reduced the temperature dif-

ference between the hot and cold fluid, and eventually

substantially degraded the strength of convection as

compared to the pure natural convection case at

Ra ¼ 104 shown in Fig. 6, decreased from previous

jwjmax ¼ 5:04 to present jwjmax ¼ 1:98. As a result, the
total heat transfer across the cavity, as represented by the

average Nusselt number or maximum heatline value, is

decreased to Nu ¼ 1:794, 20% lower than that in Fig. 4.

Fig. 7. Results of conjugate natural convection at Ra ¼ 103 in an air-filled square cavity with a conducting body of k� ¼ 5: (a)

Streamlines whose incremental step is 0.03; (b) heatlines whose incremental step is 0.2.
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As Rayleigh number increased further up to 105,

depicted in Fig. 9, however, things are different: there

are only slight variations between the conjugate and the

pure convection cases, with the convection strength and

the average Nusselt number, respectively, decreasing

from the former value of jwjmax ¼ 9:50 and Nu ¼ 4:557
in Fig. 5 to present jwjmax ¼ 8:41 and Nu ¼ 4:372. The
convection now becomes a dominant mode in the pro-

cess of heat transfer. The rarity of heatlines through the

solid body reveals that the amount of heat transported

Fig. 9. Results of conjugate natural convection at Ra ¼ 105 in an air-filled square cavity with a conducting body of k� ¼ 5: (a)

Streamlines whose incremental step is 1.0; (b) heatlines whose incremental step is 1.0.

Fig. 8. Results of conjugate natural convection at Ra ¼ 104 in an air-filled square cavity with a conducting body of k� ¼ 5: (a)

Streamlines whose incremental step is 0.2; (b) heatlines whose incremental step is 0.3.
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by the conduction is tiny. The solid body of k� ¼ 5

would enhance the conduction to a certain extent, and

accordingly reduced the convection, which results in

lower heat transfer.

Results for Ra ¼ 106 are presented in Fig. 10. The

same trend as the case Ra ¼ 105 occurs. The presence of

solid body is beneficial to the rapidly growing convec-

tion and impels it moving outward, and thus two vor-

tices appear at the corner of the solid body, which results

in increasing the convection to some extent.

4. Conclusions

In this paper, the method of using functions and lines

to visualize the momentum and heat transport for con-

vective heat transfer has been detailed analyzed. It was

used to exhibit the inherent structures or characteristics

of heat and fluid flow for natural convection and con-

jugate natural convection/heat conduction. The follow-

ing conclusions can be obtained:

1. The functions defined based on dimensionless vari-

ables are more general and straightforward than that

in dimensional form.

2. The basic characteristics of functions/lines, are useful

for perceiving the visualization results.

3. The functions and lines are unified for both fluid and

solid regions when dealing with conjugate problem. It

is not needed to calculate the coefficients of heatfunc-

tion at the fluid–solid interface, and meanwhile, heat-

function values at the fluid–solid interface are not

needed any more for drawing heatlines, which make

it easier to handle conjugate heat transfer problem.

4. Visualization results by streamlines and heatlines di-

rectly exhibit the nature of fluid flow and heat trans-

fer in macroscopical level, and hence, provides a

more vigorous means to discuss the convective heat

transfer accordingly.
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